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A model of strong interactions with the octet symmetry of Gell-Mann and Ne'eman is considered, and a 
spontaneous breakdown of this symmetry leading to nondegenerate baryon masses is sought. The Gell-Mann 
mass formula is deduced for the physically relevant symmetry-breaking solutions. 

INTRODUCTION 

CONSIDER the possibility that octet symmetry1 

exactly characterizes strong interactions—that 
there are no medium-strong symmetry-breaking inter­
actions. Observed departures from octet symmetry are 
attributed to the dynamic instability of fully symmetric 
solutions of the quantum11 field theory. Baker and 
Glashow2 showed the possibility for such a spontaneous 
symmetry breakdown in the symmetric Sakata model.3 

They showed that solutions could exist which retain 
only the reduced symmetries of isospin and hyper-
charge conservation. Applying related considerations 
to a model with octet symmetry, we find that there may 
be solutions with only these reduced symmetries, but 
that a mass sum rule must be satisfied in the approxi­
mation where the mass splittings are small compared 
to the cutoff. If the solutions are required to violate R 
symmetry (thus, to break the N—S degeneracy), this 
sum rule is the Gell-Mann mass formula. 

I. MEANING OF THE MASS FORMULA 

Gell-Mann's formula relates the masses of the eight 
baryons, 

| ^ i v + | w s = | w A + i w s , (1.1) 

and the squared masses of the eight pseudoscalar 
mesons, 

MK2=!M*2+W. (1.2) 

Both formulas are well satisfied—to 0.5% for the 
baryons, and to 2% in mass for the mesons. Okubo4 

generalized Gell-Mann's formula for any irreducible 
unitary multiplet, obtaining 

M=a+j)Y+clT(T+l)-lY22 for fermions, (1.3) 

M 2 = a+£[r(r+l)-iF2] f o r bosons. (1.4) 

These relations are equivalent to the physical mass 
Lagrangian (or, the inverse noninteracting renormalized 
Green's function) having transformation properties 
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under SU% of the superposition of a unitary singlet and 
a T = 0 , F = 0 member of a unitary octet. Because the 
reduction of a direct product of an irreducible repre­
sentation of SUz with its adjoint always contains a 
singlet just once and an octet at most twice, it follows 
that the masses within such a multiplet may be ex­
pressed [as in (1.3)] in terms of no more than three 
parameters. For some multiplets like the 10, the 
decomposition yields but one octet and the mass 
formula simplifies to5 

m=a-\-bY. 

Gell-Mann got his mass formula by introducing 
simple symmetry-breaking interactions, e.g., 

where <t> is a scalar unitary singlet meson, and O trans­
forms like the T = 0 , F = 0 member of a unitary octet 
(i.e., like the x meson) and e is a small parameter. 
Departures from baryon degeneracy to order e satisfy 
(1.3), but the mass formula does not persist to order e2. 

Here, we try to obtain split masses satisfying the 
mass formula without breaking the symmetry of the 
dynamics. 

II. THE MODEL 

We discuss eight baryons with four-fermion inter­
actions invariant under SUd, the baryons behaving like 
a unitary octet. Our considerations are otherwise 
independent of the form of the interaction. We regard 
mass as entirely dynamical in origin; therefore, we take 
the bare baryon masses as zero. Solutions to the 
quantum field theory depend parametrically only upon 
the square of the cutoff momentum A2, and upon the 
dimensionless couplings gA2 (g standing for the various 
symmetric four-fermion coupling strengths). In the 
approximations of reference 2, the mass operator is a 
constant, the masses being determined by coupled 
algebraic equations 

Mi—lljgifinjhik 2w/) , (2.1) 

which results from putting the expression for the bare 
mass equal to zero. The ga are linear combinations of 
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the various gA2 and the function h(%) depends on how 
the cutoff is introduced. We do not confine ourselves to 
this approximate expression, for the exact solution to 
the model is expected to yield an analogous result, 

m= Z i ^;(gA2, {m/KY)mh (2.2) 

in which ## depends upon all the baryon masses and is 
not a linear function of gA2. Invariance of the dynamics 
under SUz is bound up in the allowed structure of the 
functions 5^-. 

Only in a special basis of SUz are the masses diagonal 
(i.e., does the choice of fields correspond to particles of 
definite mass). What is required in order to study the 
group-theoretic properties of (2.2) is to re-express these 
equations in a general basis, where they take the form 
of 8X8 matrix equations, 

Mis=Y.hi $wiQA2,(M/A¥)Mkl, (2.3) 

in terms of a Hermitian mass matrix whose eigenvalues 
are nn. Let the 8X8 matrix Uij represent an element 
of SUZ. Under this transformation, 

J f * - > A f < / = E o * UiaMahUb*, (2.4) 

and symmetry of the dynamics under SUz requires that 
M ' also satisfy (2.3). 

Expand (2.3) in powers of A -2 about M = 0 , 

J f< /=E«^ ;« (gA») i l f w +0(MMMA-«) . (2.5) 

Invariance of (2.5) under (2.4) requires that Fij-tkij 
and higher matrices in the expansion, are invariant 
tensorial operators, i.e., 

Fiy,M= 5Z UiaUidFab;cdUbjtUck* (2.6) 
abed 

for any transformation U of SUz. I t may be shown 
that F has the general form, 

F=X ( 1 )P ( 1 )+X ( 1 0 )P ( 1 0 )+X (^ )P (^ )+X ( 2 7 )P ( 2 7 ) 

+ X U » p ( i » + x w p w + ^ N + i 7 / i N t , (2.7) 

where the eight parameters X and rj are real functions 
of gA2, and the P ( a ) are projection operators for the 
various irreducible families of 8X8 matrices. P ( I ) ) 

projects onto the completely symmetric 8D, while P ( F ) 

projects onto the completely antisymmetric 8 F . Because 
the two eights are equivalent, the operator N mapping 
8D onto corresponding members of SF (and also its 
adjoint N f , mapping 8 F onto 8D) also appears. 

All members of the 27 are, thus, degenerate eigen-
matrices of F with eigenvalue X(27), and analogously for 
the members of the 10, the 10, and the singlet. Only if 
R symmetry, as well as unitary symmetry, characterizes 
the dynamics is the situation for the eights so simple. 
Then, rj=ri'=0, and the 8D (8F) are eigenmatrices of F 
belonging to X(2>)(X(F)). In general, the supermatrix 
referring to the two eights may be triangularized, and 
the existence is assured of at least one family of eight 
matrices, irreducible under SU%, whose members are 

degenerate eigenmatrices of F. By group theory alone, 
we cannot further determine these eigenmatrices, for 
the result depends upon the detailed dynamics. 

III. THE MASS FORMULA 

In the basis where Ma is diagonal, (2.5) becomes 

mi=Zi / t f (gA>;+0(m 3 A- 2 ) . (3.1) 

Define the generators both of hypercharge F , and of 
electrical charge 7Y+-JF, so that they are diagonal in 
this basis. I t is only a matter of convention that no 
breakdown of these conservation laws results from the 
asymmetry of the masses. This is not so for the total 
isospin, but we may look for solutions to (3.1) which 
are at least approximately invariant under the isospin 
subgroup, thus ignoring the possible existence of other 
solutions in which isospin is grossly violated. There are 
just four diagonal 8X8 matrices giving masses com­
patible with isospin and hypercharge conservation 
(accommodating the four isotopic submultiplets within 
the unitary octet): the unit matrix, two matrices with 
octet transformation properties, and one member of 
the 27-plet. We denote these diagonal 8X8 matrices by 
four-dimensional vectors 

u = (ui,U2,Uz}ui), (3.2) 

whose entries refer, respectively, to N, A, 2 , and H, and 
the isotopic multiplicities are implicit so that the norm 
is defined by 

| u 12= 2u1
2+u2

2+3uz2+2uA
2. (3.3) 

To the unitary singlet corresponds the normalized 
vector 

n « = 8- 1 »( l , l , l , l ) , (3.4) 

and to the T = 0 , F = 0 member of the 27-plet corre­
sponds 

u<27>= (3/40)1/2(l, - 3 , - 1 / 3 , 1). (3.5) 

The remaining two-dimensional subspace normal to 
u(1) and u(27) has octet transformation properties. 

From (3.1), with the neglect of nonlinear terms in 
masses, it follows that rm must be an eigenvector of 
fij belonging to eigenvalue one. This requirement de­
termines the coupling strength g. Barring an accidental 
degeneracy between X(1) and either X(8) or X(27), the only 
physically admissible solution in this approximation is 
m ^ u ( 1 ) , corresponding to complete degeneracy, for the 
other eigenvectors of fi3- have negative entries. Only 
when nonlinearities are included do we obtain an 
equation determining the value of the degenerate mass. 
We conclude that to order (m/A)2 the only meaningful 
solutions to (3.1) are completely degenerage. 

A more satisfactory result is obtained from the expan­
sion of (2.2) about the mean baryon mass m. We find 

m+8i= high2, (m/A) 2 )m+E; £XgA2, (m/A)%-
+0(ra62A-2), (3,6) 
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where m=m;--5;=!(2wi+W2+3m3+2w4), and 5 is 
normal to u(1) with the norm (3.3). The discussion of 
Sec. I I applies equally well to / # , so that we conclude 
from the linearized approximation to (3.6) that 

h(gk\(m/A.?)=\, (3.7) 

and that 5 must be an eigenvector of / # normal to u(1) 

belonging to eigenvalue one. These two requirements 
determine the mean mass m and the coupling strength g. 
There are three possibilities: 

(i) 5 = 0 This gives the fully symmetric and sup­
posedly unstable solution to (2.2). 

(ii) 5^u ( 2 7 ) For this type of solution, N and S remain 
degenerate. 

(iii) 5 • u(27) = 0 In this case, 5 has octet transformation 
properties. Comparison with (3.3) and (3.5) gives the 
Gell-Mann mass rule. 

This approximation [ to all orders in (ra/A)2, and 
linear in 5] does not determine the magnitude of 5, but 
from our earlier discussion we know that 

5/m=0(m/A) 2 . (3.8) 

Deviations from the mass rule are comparable to the 
neglected nonlinear terms of (3.4), and are of order 
m(d/A)2. Both the size of the observed mass splittings 
and of the deviations from the mass formula are 
compatible with a cutoff energy of several BeV. Of 
course, we have not demonstrated that spontaneous 
asymmetries exist, but only that when they do they 
must satisfy an approximate sum rule. 

Electromagnetic mass splittings are of similar size to 
deviations from the mass formula. Perhaps violation of 
isospin, and even electromagnetism, is already implicit 

in the model we have considered, possibly along the 
lines discussed by Bjorken.6 

We also remark on the derivation of the mass rule for 
the masses of mesons ju, or for the masses of multiplets 
of resonances m*. Such derivative phenomena should 
satisfy inhomogeneous equations of the form 

Wi*=]£y &ij*tnj*+'Ek Zik'nik, '(3.9) 

M i
2 = A 2 J C + E i ^ M / + E y 9 W ? (3.10) 

and an analysis similar to that of (2.2) shows that m? 
and /Zi2 satisfy analogous mass formulas.7 

I t must be emphasized that our approach depends 
hardly at all upon the use of a field-theoretic model. 
The starting point, Eq. (2.2), could equally well have 
arisen from reasoning akin to that of Zachariasen and 
Zemach,8 wherein the eight nucleon masses (through 
their symmetric interactions) are required to support 
themselves self-consistently. In this case, no cutoff 
appears in the bootstrap equations analogous to 
Eq. (2.2). 
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